PowerHour webinar series for consulting engineers Experts you trust. Excellence you count on.

Understanding ISO 8528 Generator Set Ratings

July 18th, 2017 11:00 PDT / 13:00 CDT (1PDH issued by Cummins)

Welcome!

PowerHour is designed to help our engineer partners to...

- Keep up to date on products, technology, and codes and standards development
- Interact with Cummins experts and gain access to ongoing technical support
- Participate at your convenience, live or on-demand
- Earn PDH

Technical tips:

- Audio is available through teleconference, or your computer (don't forget to unmute)
- You are in "listen only" mode throughout the event
- Use the WebEx Q&A Panel to submit questions, comments, and feedback throughout the event. We will provide sufficient Q&A time after presentation
- If you lose audio, get disconnected, or experience a poor connection, please disconnect and reconnect
- Report technical issues using the WebEx Q&A Panel, or email powergenchannel@cummins.com

Meet your panelists

Cummins presenter:

Michael Sanford Sales Application Engineering Leader – North America Cummins

Cummins facilitator:

Tom Bakritzes, Global Sales Training Manager Cummins

Your local Cummins contacts:

- > AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com), Rocky Mountain Region
- > CO, MT, ND, UT, WY: Joe Pekarek (joe.a.pekarek@cummins.com), Rocky Mountain Region
- > IL, IA, NB, SD: John Kilinskis (john.a.kilinskis@cummins.com), Central Region
- > WI, MN, ND: Michael Munson (michael.s.munson@cummins.com), Central Region
- > MO, KS: Earnest Glaser (earnest.a.glaser@cummins.com), Central Region
- > TX: Scott Thomas (<u>m.scott.thomas@cummins.com</u>), Gulf Region
- > FL, GA, SC, NC and Eastern TN: Robert Kelly (<u>robert.kelly@cummins.com</u>), South Region
- > IN, KY, OH, TN, WV: Thomas Stadulis (thomas.stadulis@cummins.com), East Region
- > NY, NJ, CT, PA, MD: Charles Attisani (charles.attisani@cummins.com): East Region
- > For other states and territories, email powergenchannel@cummins.com or visit http://power.cummins.com/sales-service-locator

Course Objectives

Participants will be able to:

- Describe generator set ratings definitions per the ISO 8528-1.
- Identify appropriate usage of industry-adopted ratings.
- Recognize alternator thermal ratings and appropriate selection considerations.

Generator Ratings

Model: Frequency: Fuel type: kW rating:	C350 60 H; Diese 3500 3000 2750	00 D z el sta prir cor	6e ndb me ntin	y uous								•	M Fi Fi	lodel: requency: uel type: W rating:	C3500 D6e 60 Hz Diesel 3500 standby
Emissions level:	EPA	NSP	SS	tation	ary E	mer	gen/c	y Tier	2						2750 continuou
Fuel consumption	Standb	y			Prim	Prime			Continuous					 2100 0011111100	
a der consumption	kW (kV)	A)			kW (I	kW (kVA)		kW (kVA)							
Ratings	3500 (43)	75)			3000	(3750)			2750 (3	3438)			-		
Ratings without fan '	3606 (45	08)	2/4	E	3107	(3884)	2/4	E.II	2857 (3	3572)	214	E	-		
Load	77	1/2	102	228	89	1/2	150	204	1/4	1/2	147	190	-		
Usgpri	201	402	802	230	257	421	602	772	246	401	558	715	-		
-					and in	dby		Prime			Continuou	5			
Engine model Configuration					QSK9 Cast i	idby 19 95-G9 iron, Vee	e, 16 cylir	Prime rating			Continuou rating	5	-		
Engine model Configuration Aspiration					Cast i Turbo	idby 95-G9 iron, Vee ocharged	e, <u>16 cylir</u> d and Afte	Prime rating			Continuou rating	5	-		
Engine model Configuration Aspiration Gross engine power output, kWm	(bhp)				Cast i Turbo	dby 95-G9 iron, Vee ocharged (5051)	e, 16 cylir d and Afte	Prime rating nder ercooled 3215 (430	9)		Continuou rating 2956 (3962)	5	- - - -		
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa (psi) Been am (in)	(bhp)				Cast i 2634 2634	459 95-G9 95-G9 95-G9 95-G9 95-G9 95-G9 95-G9 95-G9 95-G9 95-G9 95-G9 95-G9 95-G9 95-G9 95-G9 95-G9 95-5	e, 16 cylir d and Afte	Prime rating nder ercooled 3215 (430 2248 (326	9)		Continuou rating 2956 (3962) 2068 (300)	5	-		
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa (psi) Bore, mm (in) Stroke, mm (in)	(bhp)				ratin QSK9 Cast i Turbo 3768 2634 190.0 210 1	(382) (5.69) (5051) (382) (7.48) (8.27)	e, 16 cylir d and Afte	Prime rating nder ercooled 3215 (430 2248 (326	9)		Continuou rating 2956 (3962) 2068 (300)	5	-		
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa (psi) Bore, mm (in) Stroke, mm (in) Rated speed, rpm	(bhp)				ratin QSK9 Cast i Turbo 3768 2634 190.0 210.1 1800	(382) (7.48) (8.27)	e, 16 cylir d and Afte	Prime rating nder ercooled 3215 (430 2248 (326	9)	2	Continuou rating 2956 (3962) 2068 (300)	5	-		
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa (psi) Bore, mm (in) Stroke, mm (in) Rated speed, rpm Piston speed, m's (t/min)	(bhp)				ratin QSK9 Cast i Turbo 3768 2634 190.0 210.1 1800 12.6 ((382) (2480) (2480)	e, 16 cylir d and Afte	Prime rating nder ercooled 3215 (430 2248 (326	9)		Continuou rating 2956 (3962) 2068 (300)	5	-		
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa (psi) Bore, mm (in) Stroke, mm (in) Rated speed, rpm Piston speed, mis (ft/min) Compression ratio	(bhp)				ratin QSK9 Cast i Turbo 3768 2634 190.0 210.1 1800 12.6 (15.5:1	(382) (7.48) (382) (7.48) (8.27) (2480) 1	e, 16 cylir d and Afte	Prime rating nder ercooled 3215 (430 2248 (326	9)	2	Continuou rating 2956 (3962) 2068 (300)	5	-		
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa (psi). Bore, mm (in) Stroke, mm (in) Rated speed, rpm Piston speed, ms (t/min) Compression ratio Lube oil capacity, L (qt)	(bhp)				Tatin QSK9 Cast i Turbo 3768 2634 190.0 210.1 1800 12.6 (15.5:1 647 (€	(199) (1	e, 16 cylin	Prime rating nder ercooled 3215 (430 2248 (326	9)		Continuou rating 2956 (3962) 2068 (300)	5	-		
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set ratel load, kPa (psi) Bore, mm (in) Stroke, mm (in) Rated speed, pm Piston speed, mis (ft/min) Compression ratio Lube oil capacity, L (qt) Overspeed limit, pm Benenarative power kW	(bhp)				ratin QSK9 Cast i Turbo 3768 2634 190.0 210.1 1800 12.6 (15.5:1 647 (€ 2070	(5051) (5-G9 (5051) (382) (7.48) (8.27) (2480) 1 (384)	e <u>, 16 cylir</u> d and Afte	Prime rating nder ercooled 3215 (430 2248 (326	9)		Continuou rating 2956 (3962) 2068 (300)	5	-		
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa (psi) Bore, mm (in) Stroke, mm (in) Rated speed, rpm Piston speed, m/s (ft/min) Compression ratio Lube oil capacoty, L (qt) Overspeed limit, rpm Regenerative power, kW Fuel flow Maximum fuel flow, Lhr (US gph) Maximum fuel flow, Lhr (US gph)	(bhp)	, kPa (ir	nHg)		Tatin QSK9 Cast i Turbo 3788 2634 190.0 210.1 1800 12.6 (15.5:1 647 (6 2070 321 1801. 13.5 ((1,423) (4,423) (4,423) (4,423) (4,423) (4,423) (4,423) (4,423) (4,423)	e, 16 cylir d and Afte	Prime rating nder eroooled 3215 (430 2248 (326	9)		Centinuou rating 2956 (3962) 2068 (300)	s	-		
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa (psi) Bore, mm (in) Stroke, mm (in) Rated speed, rpm Piston speed, m/s (ft/min) Compression ratio Lube oi capacity, L (qt) Overspeed limit, rpm Regenerative power, kW Fuel flow Maximum fuel flow, Lhr (US gph) Maximum fuel riter metriction with Maximum fuel return line restriction	(bhp) clean filter, n, kPa (inH	. kPa (ir g)	nHg)		ratin QSK9 Casti Turbo 3768 2634 190.0 210.1 1800 12.6 (15.5:1 647 (£ 2070 321 1601. 13.5 (34 (10)	idby idby ig 55-G9 iron, Vee ocharged (5051) (382) ((7.48) (8.27) (2480) 1 1 6824) 1 (423) (4) 0)	e, 16 cylir d and Afte	Prime rating nder ercooled 3215 (430 2248 (326	9)		Continuou rating 2956 (3062) 2068 (300)	s	-		
Engine model Configuration Aspiration Gross engine power output, kWm, BMEP at set ratel load, kPa (psi). Bore, mm (in) Stroke, mm (in) Rated speed, rpm Piston speed, ms (t/min) Compression ratio Lube oil capacity, L (qt) Overspeed limit, rpm Regenerative power, kW Fuel flow Maximum fuel inter restriction with Maximum fuel inter restriction	(bhp) olean filter, n, kPa (inH C (*F)	<u>, kPa (ir</u> g)	nHg)		ratin QSK9 Casti Turbo 3768 2634 190.0 210.1 1800 12.6 (15.5:1 647 (£ 2070 321 1601. 13.5 (34 (10 71.1 ((382) (38) (382) (e, 16 cylir d and Afte	Prime rating nder ercooled 3215 (430 2248 (328	9)		Continuou rating 2956 (3062) 2068 (300)	s			
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa (psi) Bore, mm (in) Stroke, mm (in) Rated speed, rpm Piston speed, m/s (t/min) Compression ratio Lube oil capacity, L (qt) Overspeed limit, rpm Regenerative power, kW Fuel flow Maximum fuel flow, Lhr (US gph) Maximum fuel flow, Lhr (US gph) Maximum fuel inlet restriction with Maximum fuel inlet temperature, * Maximum fuel inlet temperature, *	(bhp) olean filter, n, kPa (inH) C (*F) *C (*F)	kPa (ir	nHg)		ratin QSK9 Casti Turbo 2634. 190.0 210.1 1800 12.6 (15.5:1 647 (£ 2070 321 1801. 13.5 (34 (10 71.1 (92.2 ((199) 95-G9 95-G9 95-G9 96-harged (5051) (382) (7.48) (8.27) (2480) 1 (8.27) (2480) 1 1 384) 1 (423) (4) 0) (160) (198)	e, 16 cylir d and Afte	Prime rating ercooled 3215 (430 2248 (326	9)		Continuou rating 2056 (3062) 2088 (300)	s			
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa (psi) BMEP at set rated load, kPa (psi) BMEP at set rated load, kPa (psi) BT (psion speed, m/s (ft/min) Compression ratio Lube oil capacity, L (qt) Overspeed limit, rpm Regenerative power, kW Fuel flow Maximum fuel flow, Lhr (US gph) Maximum fuel return line restriction Maximum fuel inlet temperature, *	(bhp) olean filter, n, kPa (inH C (*F) *C (*F)	kPa (ir	nHg)		Casti QSK9 Casti Turbo 3788 2634 190.0 210.1 1800 12.6 (15.5:1 647 (6 2070 321 1601. 13.5 (34 (10 71.1 (92.2 (281 /2	(19) 15-G9 15-G9 15-G9 15-G9 15-G9 15-G9 16 16 16 16 16 16 16 16 16 16	e, 16 cylir d and Afte	Prime rating ercooled 3215 (430 2248 (326	9)		Continuou rating 2056 (3062) 2068 (300)	s	-		
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set tade load, kPa (osi). Bore, mm (in) Stroke, mm (in) Stroke, mm (in) Rated speed, rpm Piston speed, ms (t/min) Compression ratio Lube oil capacity, L (qt) Overspeed limit, rpm Regenerative power, kW Fuel flow Maximum fuel frew, Lhr (US gph) Maximum fuel inter restriction With Maximum fuel intet temperature, " Maximum fuel intet temperature," Maximum fuel intet temperature, Combustion air, m ³ /min (scfm) Maximum fuel coultet temperature,	(bhp) olean filter, n, kPa (inH C (*F) *C (*F) th olean filt	kPa (ir g)	nHg)	nH ₂ O)	ratin QSK8 Cast ii Turbo 3768 28341 190.0 210.1 1800 210.1 1800 210.1 1800 210.1 1800 210.1 1800 210.1 1800 211 1801.1	489y 15-G9 15-G9 160, Vee 16051) (382) (7.48) (8.27) 12480) 1 14423) 144 2) 160) 1989 9930) 18)	e, 16 cvlir d and Aft	Prime rating 2315 (430 2248 (326 2248 (326 2270 (0550	9)		Continuou rating 2058 (3062) 2088 (300)	s			
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa (osi) Bore, mm (in) Stroke, mm (in) Rated speed, rpm Piston speed, m/s (f/min) Compression ratio Lube oil capacity, L (qt) Overspeed limit, rpm Regenerative power, kW Fuel flow Maximum fuel inter restriction Maximum fuel intet remperature, " Maximum fuel intet meprature," Maximum fuel intet meprature, Combustion air, m ³ /min (sofm) Maximum fuel coult temperature, Aire Combustion air, m ³ /min (sofm) Maximum ic cleaner restriction wi Alternator cooling air, m ³ /min (sofm)	(bhp) clean filter, n, kPa (inH C (*F) *C (*F) th clean filt n)	kPa (ir g) er, mm	nHg) H ₂ O (iii	nH ₂ O)	ratin QSK8 Cast ii Turbo 3768 2034 190.0 210.1 1800 210.1 1800 210.1 180.0 210.1 180.0 12.6 (r) 2070 321 1001.1 13.5 (r) 34 (101 13.5 (r) 92.2 (r) 281 (g) 255 (g)	(199) 15-G9 15-G9 15-G9 16-C2 16051) 1822 1(7.48) 1(8.27) 1(8.27) 1(8.27) 1(8.27) 1(8.27) 1(8.27) 1(8.27) 1(1423)	e, 16 cylin	Prime rating 3215 (430 2248 (326 2248 (326 2248 (326 2270 (0550	9)		Continuou rating 2056 (3062) 2088 (300) 2088 (300)	5			
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set ratel load, kPa (psi) Bore, mm (in) Stroke, mm (in) Stroke, mm (in) Piston speed, m/s (ft/min) Compression ratio Lube cil capacity, L (dt) Overspeed limit, rpm Regenerative power, kW FUE flow Maximum fuel inlet restriction with Maximum fuel inlet remperature, * Maximum fuel inlet remperature, * Maximum fuel enter fine restriction Maximum air cleaner restriction wi Alternator cooling air, m ³ /min (scfm Exhaust flow at set rated load. m ³ /	(bhp) clean filter, n, kPa (inH C (*F) *C (*F) th clean filt n) min (cfm)	kPa (iri g) er, mmi	nHg) H ₂ O (ii	nH ₂ O)	Tatlin Casti Casti Turbo 3768 2634 180.0 210.1 180.0 210.1 180.0 210.1 180.0 210.1 180.0 210.1 180.0 210.1 180.0 210.1 180.0 210.1 180.0 210.1 180.0 210.1 180.0 210.1 180.0 210.1 180.1 13.6 13.4 10.2 21.1 92.2 21.1 221.1 221.1 221.1 221.1 221.1 221.1 221.1 221.1 221.1 221.1 221.1 221.1	(5051) (5-50) (5051) (5051) (7.48) (7.48) (8.27) (4.27) (4.27) (4.27) (1.423)	e, 18 cylin d and Afte	Prime rating erocoled 3215 (430 2248 (326 2248 (326 2270 (9550	0))))		Centinuou rating 2956 (3962) 2068 (300) 2068 (300) 2065 (9370) 2005 (9370)				
Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa (psi) BMEP at set rated load, kPa (psi) Bore, mm (in) Stroke, mm (in) Rated speed, rpm Fiston speed, m/s (ft/min) Compression ratio Lube oil capacity, L (qt) Overspeed limit, rpm Regenerative power, kW Fuel flow Maximum fuel flow, Lhr (US gph) Maximum fuel inlet restriction with Maximum fuel inlet remperature, * Maximum fuel inlet remperature, Air Combustion air, m ³ min (sofm) Maximum air cleaner restriction wi Alternator cooling air, m ³ min (soff Exhaust flow at set rated load, m ³	(bhp) clean filter, n, kPa (inH C (*F) *C (*F) th clean filts n) min (cfm) oad, *C (*F	kPa (ir g) er, mm	nHg) H ₂ O (it	nH ₂ O)	ratin Casti Casti Turbo Casti Turbo 3768 2034 190.0 210.1 1800 12.8 (2034 190.0 12.8 (2010 12.8 (2010 12.8 (2010 321 1801. 13.5 (34 (10) 22.1 (231 (234 (234 (235 (235 (236 (700 (231 (400 ((1,243) 1 (423) 1 (e, 18 cylin	Prime rating nder ercooled 3215 (430 2248 (326 2248 (326 2248 (326 2248 (326 2248 (326) 2270 (9550 270 (9550) 	9)))		Centinuou rating 2956 (3962) 2068 (300) 2068 (300) 2055 (9370) 2055 (9370) 309 (21520) 417 (783)				

Industry Standard for Generator Set Ratings

- ISO 8528: Standard for reciprocating internal combustion engine driven alternating current generator sets.
- Defines application, ratings and performance of generator sets.
- Sect. 13 defines these ratings:
 - Emergency Standby Power (ESP)
 - Limited Time Prime Power (LTP)
 - Prime Rated Power (PRP)
 - Continuous Operating Power (COP)

- Any manufacturer can go above and beyond the ISO ratings definitions.
 - Data Center Continuous (DCC)

Factors Affecting Choice of Generator Set Rating

Annual Generator Set Run Time

Applied Load (Variable or Constant) Negotiated Contracts (Rate Curtailment Programs)

Warranty

Emergency Standby Power (ESP)

Example ESP Applications

- Emergency (such as backup to Life Safety, legally required or critical loads)
- Optional Standby (not required by the Authority Having Jurisdiction, but desired to minimize economic losses or equipment damages at a site due to utility power interruptions)

Application:

2 x Cummins DQGAA (1250 kWe) 1 x Cummins DQGAB (1500 kWe) Location:

Intermountain Healthcare Facility in Salt Lake City, UT

Application:

Fully Integrated standby power system containing 7 Cummins C2000D6 (2000 kWe) generator sets individually controlled and paralleled with PCC3201

Location: Samsung SDS Institute in Suwon, South Korea

Limited Time Prime Power (LTP)

Examples of LTP Applications

- Base Loading
- Rate Curtailment

Application: 9 x Cummins C2000 D6 (2000 kWe ISO LTP) Location: Santo Domingo, Dominican Repbulic

Prime Rated Power (PRP)

$$P_{pa} = \frac{P_1 t_1 + P_2 t_2 + P_3 t_3 + \dots + P_n t_n}{t_1 + t_2 + t_3 + \dots + t_n} = \frac{\sum_{i=1}^n P_i t_i}{\sum_{i=1}^n t_i}$$

Examples of PRP Applications

- Applications that use on-site generation in lieu of a utility electricity supply, typically where utility power is not available.
- Peak shaving and rate curtailment.

Application:

500kVA generator powers the dockside rubber tyred gantry cranes.

Cranes lift capacity is 88 tons and can move at 440 feet per minute.

Continuous Operating Power (COP)

Examples of COP Applications

- The COP Rating Genset is generally used when paralleled to the utility
- Base Loading
- Combined Heat and Power (CHP)

The Cummins Power Generation lean-burn generator set produces up to 1.75 MW of electricity and 4,000 pounds of steam per hour in a CHP application.

The lean-burn engine's radiator and critical exhaust silencer are roof mounted.

Co-generation – Chicago Museum of Science and Industry

Industry-Adopted Ratings

Uptime Institute Compliance

- The tier rating system is the industry standard for benchmarking data center reliability.
- Four tiers, each building on requirement to the one below (ex. Tier II requires all of Tier I capability, plus the added requirements).
- Power Generation and distribution is one of 16 subsystems evaluated.
- No fractional tier ratings.
- Tiers do not specify certain equipment, but rather a level of redundancy and security to maximize run time.
- To be an enterprise class data center, UPS and generator sets are required equipment.
- Significant costs associated with higher tier rating.

Generator Sets for Tier III or Tier IV Systems

- "Disruptions to the utility power are not considered a failure but an operational condition for which the site must be prepared"
- "A Tier III or Tier IV engine-generator system, along with its power paths and other supporting elements shall meet ... performance confirmation tests while they are carrying the site on engine-generator power"
- "Engine-generators for Tier III and Tier IV sites shall not have a limitation on consecutive hours of operation when loaded to 'N' demand"

Data Center Continuous Ratings

- Data Center Continuous (DCC) Ratings meet the Uptime Institute Tier III and Tier IV requirements
- Data Center Continuous (DCC) Rating is defined as:

The maximum power which the generator is capable of delivering continuously to a constant or varying electrical load for unlimited hours in a data center application.

"... where a reliable utility power is available..."

For more details, watch out for upcoming **PowerHours**, *Generator Ratings for Data Centers* and *Generator Set Features for Data Centers*!

Specification sheet

Diesel generator set QSK95 series engine

2750 kW - 3350 kW 60 Hz Data Center Continuous EPA Tier 2 emissions regulated

Description

Cummins Power Generation commercial generator sets are fully integrated power generation systems providing optimum performance, reliability and versatility for Data Center applications.

Features

Data Center Continuous (DCC) - Applicable for supplying power continuously to a constant or varying electrical load for unlimited hours in a data center application.

Uptime Compliant - Meets the requirement of a Tier III and IV data center site by being rated to run for unlimited hours of operation when loaded to 'N' demand for the engine generator set.

Rating Example – Generator Set Model DQLF

Generator Set Rating Example

- Emergency Standby Power rating 2750 kW
 - Max avg. load in 24h period (70%): 1925 kW
 - 200h/year
- Prime Rated Power rating 2500 kW
 - Max avg. load in 24h period (70%): 1750 kW
- Limited Time Prime Power rating 2500 kW
 - Max avg. load in 24h period (100%): 2500 kW
 - 500h/year with non-variable load
- Continuous Operating Power 2100 kW
 - Max avg. load in 24h period (100%): 2100 kW
- Data Center Continuous rating 2500 kW
 - Max avg. load in 24h period (100%): **2500 kW**
 - Unlimited hours in Data Center Application

Concept Check

Based on the application shown, which ISO 8528-1 generator set rating should be selected?

- a) Emergency Standby Power
- b) Prime Rated Power
- c) Limited Time Prime Power
- d) Continuous Operating Power

Generator Set Ratings Watch-Outs

Parasitic losses

 Not all generator set manufacturers publish ratings that include all parasitic losses such as cooling systems.

> Published Rating: 3350 kWe Parasitic Losses: 100 kWe - Cooling Fans Actual Available Customer Load: 3250 kWe

- Site impact on ratings
 - Altitude and ambient conditions may impact available customer load.
 - Generator set manufacturers adopt a wide variety of "standard" conditions.

Altitude Impact

EPA Usage Categories

EPA Product Use Definitions

- EPA definitions are NOT the same as ISO8528-1
- EPA definitions are determined by actual product <u>use</u> and <u>engine</u> <u>horsepower</u>:

Stationary (40 CFR Part 60)	Stationary Emergency Stationary Non-Emergency				
Nonroad CI (40 CFR Part 89)	 No emergency provision in non-road rules 				
Nonroad SI (40 CFR Part 1048)	 No emergency provision in non-road rules 				

- Emissions are most stringent for non-road and stationary nonemergency, compared to stationary emergency
- Codes and details found on EPA website
 - http://www.epa.gov/ttn/atw/icengines

Concept Check

You are the owner of a new facility that requires generator sets for the sole purpose of providing emergency backup power for the utility. The annual utility outage expected is around 20 hrs/year with a variable load profile.

Which ISO 8528-1 Generator Set rating/EPA Exhaust Emissions designation should you select?

- a) Emergency Standby Power/Stationary Non-Emergency
- b) Prime Rated Power/Stationary Non-Emergency
- c) Emergency Standby Power/Stationary Emergency
- d) Continuous Operating Power/Stationary Non-Emergency

Alternator Ratings

Generator Set Alternator Options and Ratings – Key Points

- Several generator set models may be based on the same engine platform.
- In turn, each generator set is typically offered with multiple ratings options as discussed previously.
- Each generator set rating may be offered with multiple alternator options with varying voltage options.

Generator Set Alternator Options and Ratings – Example

2130

STAMFORD P80-HV

HVSI804W - 3032 kW HVSI804X - 3436 kW

60Hz Diesel Model: C3500 D6e

Standby: 3500 kWe Prime: 3000 kWe Continuous: 2750 kWe

AvK DIG-HV

DIG142c - 3398 kW DIG142d - 3644 kW DIG142f - 4299 kW

Generator Set Alternator Ratings Definitions

Insulation Class

- Maximum operation temperature allowed by the insulation material in the winding
 - Class F (155°C) and Class H (180°C)
- Defined by international standard (NEMA, UL, IEC)
- Temperature Rise Class/Ratings
 - Temperature rise allowed over an ambient temperature
 - Depends on the application
 - Standby or Continuous

Temp. Rise Class	Allowable Full Load Temp. Rise, °C	Max.Operation Temp. Allowed, °C	
В	80	130	
F	105	155	
Н	125	180	

Generator Set Alternator Ratings

3 Ø RATINGS (0.8 power factor)				60 Hz	(winding no)
(Based on specific temperature rise at 40°C ambient temperature)	<u>416</u> (12)	<u>440</u> (12)	<u>480</u> (12)	<u>600</u> (07)	<u>380</u> (13)
163°C Rise Ratings kW	2288	2420	2640	2640	2640
kVA	2860	3025	3300	3300	3300
150°C Rise Ratings kW	2224	2352	2560	2560	2560
kVA	2780	2940	3200	3200	3200
125°C Rise Ratings kW kVA	2080 2600	2200 2750	2400 3000	2400 3000	2400 3000
105°C Rise Ratings kW kVA	1908 2385	2016 2520	2200 2750	2200 2750	2200 2750
80°C Rise Ratings kW kVA	1664 2080	1760 2200	1920 2400	1920 2400	1920 2400

Generator Set Ratings

Generator Set Rating (ISO8528-1)	Emergency Standby Power (ESP)	Limited Time Prime (LTP)	Prime Rated Power (PRP)	Continuous Operating Power (COP)
Load Type	Variable	Constant	Variable	Constant
Annual operating hours	200	500	Unlimited	Unlimited
Average load	70%	100%	70%	100%
Overload	No	No	10% (1 hr/12 hrs, 25 hrs/year)*	No
Max. Alternator Rating (NEMA MG1-32)	Standby	Standby	Continuous	Continuous
Max. Alternator Ratings	Class H Standby 150/40 Standby 163/27 Class F Standby 125/40	Class H Standby 150/40 Standby 163/27 Class F Standby 125/40	Class H 125/40 Class F 105/40 Class B 80/40	Class H 125/40 Class F 105/40 Class B 80/40

Summary

- Select correct Generator set rating based on intended use, load profile and hours of operation.
- ISO 8528-1 defines industry standard generator set ratings, industryadopted ratings may go above and beyond ISO 8528-1.
- EPA ratings are not to be confused with ISO8528-1 generator set ratings.
- Thermal ratings are directly correlated to insulation half life and may impact other power system characteristics.

Q&A

- Type your questions, comments, feedback in the WebEx
 Q&A box. We will get to as many questions as we can
- We will publish consolidated FAQ along with presentation and webinar recording on <u>powersuite.cummins.com</u>

Your local Cummins contacts:

- > AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com), Rocky Mountain Region
- > CO, MT, ND, UT, WY: Joe Pekarek (joe.a.pekarek@cummins.com), Rocky Mountain Region
- > Northern IL, IA: John Kilinskis (john.a.kilinskis@cummins.com), Central Region
- > UP of MI, MN, East ND, WI: Michael Munson (michael.s.munson@cummins.com), Central Region
- > NB, SD, West MO, KS: Earnest Glaser (earnest.a.glaser@cummins.com), Central Region
- > South IL, East MO: Jeff Yates (<u>Jeffery.yates@cummins.com</u>), Central Region
- > TX: Scott Thomas (m.scott.thomas@cummins.com), Gulf Region
- > FL, GA, SC, NC and Eastern TN: Robert Kelly (robert.kelly@cummins.com), South Region
- > NY, NJ, CT, PA, MD: Charles Attisani (charles.attisani@cummins.com): East Region
- > CA, HI: Brian E Pumphrey (brian.Pumphrey@cummins.com)
- > WA, OR, AK: Tom Tomlinson (tom.tomlinson@cummins.com)
- > For other states and territories, email powergenchannel@cummins.com or visit http://power.cummins.com/sales-service-locator

Closing

Watch out for a follow-up email including

- A Link to webinar recording and presentation
- A PDH Certificate

Visit <u>powersuite.cummins.com</u> for

- PowerHour webinar recording, presentation and FAQ archive
- Other Cummins Continuing Education programs
- Sizing and spec development tool
- Please contact Mohammed Gulam if you have any questions related to the PowerHour webinar (mohammed.gulam@cummins.com)